Inclusion results for certain subclasses of spiral-like multivalent functions involving a generalized fractional differintegral operator
Abstract: Let A(p) denote the class of analytic and p-valent functions in the open unit disc U = {z:vertical bar z vertical bar < 1}. Put <br>G(p,eta,mu)(lambda)(z) = z(p) + Sigma(infinity)(n=1)(1 + p)(n)(1 + p + eta - mu)(n)/(1 + p - mu)(n)(1 + p + eta -lambda)(n)z(n+p) <br>(p is an element of N; mu, eta is an element of R; mu < p + 1; -infinity < lambda < eta + p + 1) <br>and define [G(p,eta,mu)(lambda)(z)]((-1)) in terms of the Hadmard product (or convolution) <br>G(p,eta,mu)(lambda)(z) * [G(p,eta,mu)(lambda)(z)]((-1)) = z(p)/(1 - z)(delta+p) (delta > -p; z is an element of U). <br>In this paper, we introduce certain new subclasses of spiral-like multivalent functions defined by using the operator <br>H(p,eta,mu)(lambda,delta)f(z) = [G(p,eta,)mu(lambda)(z)]((-1)) * f(z) <br>and investigate several inclusion properties of these classes. Also, some applications involving integral operator are considered.
Full Text and Attachments: