摘要
针对传统协同过滤推荐算法评分数据稀疏、没有考虑推荐的时效性而导致推荐准确性不佳的问题,提出了一种基于改进K-means和优化评分的用户协同过滤推荐算法,在评分矩阵中加入用户对项目类别的评分,并使用Weigh Slope One算法得到的预测评分替代评分矩阵中的未评分项,以此降低数据稀疏性;并改进K-means聚类算法,对填充后的用户数据进行聚类,引入时间权重,将时间因子纳入评分预测中.在MovieLens-100K数据集上进行仿真实验,实验结果表明:所提算法较好解决了评分数据稀疏,推荐时效性差的问题,且推荐效果具有明显提升.
- 单位