摘要
为了提高高斯混合模型对小麦病叶的分割精度,减少分割时间,提出了一种基于PCA和高斯混合模型的分割方法。首先充分利用图像的颜色信息,将图像多个颜色通道进行主成分分析计算,获得3个主要颜色通道;在此基础上,将图像分成多个分块,根据其像素平均值排序,各取前后多个分块组成新的像素集合进行高斯混合模型运算;最后遍历整个图像,将每个像素归类到已求出的高斯模型上得出分割结果。通过对小麦锈病图像的分割试验表明,该方法的错分像素率分别比高斯混合模型、K-means等传统分割方法低5.46和13.44个百分点。
-
单位西北农林科技大学; 建筑工程学院; 电子工程学院