摘要
针对实际环境噪声下的手机来源识别问题,提出一种基于线性判别分析和时序卷积网络的手机来源识别方法。首先,通过分析不同手机语音特征在实际环境噪声下的分类性能,基于带能量描述符、常数Q变换域和线性判别分析得到一种新的手机语音混合特征。然后,以此混合特征为输入,基于时序卷积网络进行训练和分类。最后,在10个品牌、47种手机型号、32 900条语音样本的实际环境噪声语音库上的测试结果显示,所提方法的平均识别准确率达到99.82%。此外,与经典的基于带能量描述符和支持向量机的方法,以及基于常数Q变换域和卷积神经网络的方法相比,平均识别准确率分别提高了0.44和0.54个百分点,平均召回率分别提高了0.45和0.55个百分点,平均精确率分别提高了0.41和0.57个百分点,平均F1分数分别提高了0.49和0.55个百分点。实验结果表明,所提方法具有更优的综合识别性能。
- 单位