摘要

在高频金融数据分析中,高维波动率矩阵的估计和预测十分具有挑战性,当金融资产存在自然的分组结构时,此问题尤为突出.为此,本文提出一种新的GARCH-It?分组因子模型,将对数价格序列表示为共同因子、分组因子以及异质项,并通过将离散的广义自回归条件异方差(generalized autoregressive conditional heteroskedasticity, GARCH)结构嵌入特征值过程的波动率中,实现刻画数据波动率动态的目的.本文利用伪极大似然法得到模型的参数估计,建立极限理论,模拟研究表明其良好的有限样本性质.在实证研究中,利用上海证券交易所主板及深圳证券交易所创业板的股票高频价格数据,对比了不分组的模型及波动率矩阵的非参数多尺度已实现波动率(multi-scale realized volatility,MSRV)估计,对比结果显示本文模型具有更好的波动率预测效果.