摘要
随着人工智能技术与大数据科学的不断发展,联邦学习在金融、医疗、工业制造等重要领域中得到广泛运用.同集中式学习相比,联邦学习在效率和安全性上都有明显的优势.然而,随着应用层次的逐步深入,联邦学习也随之暴露出一些安全问题,例如:隐私窃取、中毒攻击等.为了更好的挖掘联邦学习中存在的安全漏洞,本文提出了一种面向联邦学习的神经通路中毒攻击方法(Neural Path Poisoning Attack, NPFA).首先利用准备的中毒数据集生成与目标模型等价的中毒模型,然后提取中毒模型中的神经通路并替换目标模型的神经通路,使得联邦模型在聚合的过程中中毒,并在保持中毒能力的同时克服中毒模型与正常模型差异较大这一问题,实现隐蔽的中毒攻击,绕过防御方法.大量实验验证了植入神经通路后的中毒成功率可以达到85%以上,并且联邦学习主任务性能略有提升.值得一提的是,在一些联邦防御方法下,NPFA依旧有很好的攻击效果.
- 单位