摘要
高清晰度的图像是信息获取和精确分析的前提,研究多帧图像的超分辨率重建能够有效解决因外部拍摄环境引起的图像细节丢失、边缘模糊等问题。该文基于纳米级忆阻器,设计一种多通道忆阻脉冲耦合神经网络模型(MMPCNN),能够有效模拟网络中连接系数的动态变化,解决神经网络中固有的参数估计问题。同时,将提出的网络应用于多帧图像超分辨率重建中,实现低分辨率配准图像的融合操作,并通过基于稀疏编码的单帧图像超分辨率重构算法对获得的初始高分辨率图像进行优化。最终,一系列计算机仿真及分析(主观/客观分析)验证了该文提出方案的正确性和有效性。
- 单位