针对不平衡水声目标数据分类问题,本文提出了一种间隔和差异性融合的选择性集成算法。从理论上给出了单纯增加差异性无法改善泛化性的原因,融合间隔和差异性构造了选择性度量,利用选择性度量对基分类器进行选择性集成从而形成最终分类器。实测水声目标数据试验结果表明:本文算法整体性能优于AdaBoost算法和常规选择性集成算法,说明其更适合处理不平衡水声目标数据分类问题。