摘要

卫星遥感图像的智能化处理存在着处理标注时标准不统一、数据分布不均匀的问题,导致有效样本不多、目标检测效果较差的现象。针对这种现象,提出一种基于MoCo无监督对比学习模型的目标检测算法,目标检测的框架采用以ResNet50为骨干网络的YOLOv5,使用对比学习得到的ResNet50的权重作为固定值不进行梯度迭代参与YOLOv5下游的检测任务训练。对比学习实验在AID数据集上进行,改进的MoCo v2的top-1精度最高达到95.888%。在下游的检测任务中,使用的是TGRS-HRRSD数据集,改进MoCo v2的预训练权重的mAP@.5:.95精度达到67.8%,较不使用预训练权重提高了5.6个百分点。结果证明改进的MoCo对比学习模型的有效性,在对比学习之后的下游检测任务中,检测精度也有所提高。