摘要

针对容差模拟电路故障诊断中软故障诊断样本较少和正确率低的问题,提出一种基于正弦余弦算法(Sine Cosine Algorithm,SCA)优化的容差模拟电路软故障诊断方法。对实验电路进行Monte Carlo分析后采集输出电压信号后采用小波变换提取小波熵组成故障特征集,采用主元分析法(Principal Component Analysis,PCA)对特征降维,利用基于SCA的支持向量机(Support Vector Machine,SVM)对故障集进行分类。通过对Sallen-Key带通滤波电路的分析,SCA-SVM分类算法具有较好的分类准确率与较快的诊断速度,优于网格搜索(GridSearch)、遗传算法(GA)和粒子群算法(PSO)。最后,在四运放双二次高通滤波器电路上进行测试。结果表明,SCA-SVM在容差模拟电路软故障诊断中具有较强的适应能力。