摘要

针对配对交易策略目前存在的套利空间小、投资收益低等问题,本文基于强化学习算法构建配对交易策略,并以2010-2016年期间美国公共事业股的收盘价作为研究对象,验证配对交易策略的投资绩效。研究结果表明,相较于传统的配对交易策略,基于强化学习算法的配对交易策略避免了经验参数对于交易结果的不利影响,可以更好的捕捉潜在的交易机会,在夏普比率、年化收益率等指标上表现更加优异,因而将强化学习算法引入配对交易当中可以为投资者提供一种有效的套利手段和风控工具。