摘要
针对中文短文本的特征提取中存在特征稀疏的局限性,本文提出了一种基于多特征融合的短文本分类模型(Multi-feature fusion model,M FFM).首先,通过字词向量结合的方式构建新的文本表示;其次,通过BILSTM (Bi-directional Long ShortTerm Memory)、CNN(Convolutional Neural Networks)和CAPSNET(Capsule Network)模型对短文本进行不同层面的特征提取,并使用Self-attention模型动态调节各模型特征在最终特征构建中的权重系数.在实验部分,本文用MFFM方法与四个短文本分类经典模型(CNN、BILSTM、CAPSNET和CNN-BILSTM)在三个中文短文本数据集上进行验证,为了进一步验证数据融合(将三个中文短文本数据正负样本融合)对MFFM的影响,实验结果表明MFFM模型性能在四个评价指标(F1、Recall、Precision、Accuracy)下优于对比模型.总之,这可表明M FFM是短文本分类模型的一个有用框架.
-
单位昆明理工大学; 自动化学院