摘要

洪涝灾害会造成农作物严重受损,因此洪涝季节作物的种植结构是估算洪涝灾害损失、进行防灾减灾措施的必要信息。为了能够快速便捷地提取洪涝季节作物种植结构,该文以湖北省监利县为研究区域,探讨了采用空间分辨率较高的Landsat8陆地成像仪(operational land imager,OLI)影像和时间分辨率较高的中分辨率成像光谱仪(moderate-resolution imaging spectroradiometer,MODIS)数据,综合利用多源多时相遥感影像提取中小尺度范围的洪涝季节作物种植结构的方法。首先利用MODIS数据建立作物的归一化植被指数(normalized difference vegetation index,NDVI)时间序列曲线,并采用改进后的Savitzky-Golay滤波器对曲线进行平滑处理,然后根据作物的物候特征设定阈值,界定作物种类,进而以此为依据在作物关键生育时期的Landsat8 OLI高清影像中选择合适的感兴趣区域(region of interest,ROI)作为先验知识,使用BP(back propagation)神经网络模型对OLI数据进行监督分类,提取作物种植面积分布。最后利用统计数据与资源三号卫星数据对提取结果进行验证,平均精度达到88%,能够较准确地反映监利县洪涝季节作物的分布情况。该研究可为洪涝灾害损失估算提供可靠基础。