针对核极限学习机的网络入侵检测结果易受正则化系数C和核参数g的影响,提出了一种灰狼算法优化KELM的网络入侵检测算法,提高KELM的网络入侵检测效果。实验结果表明,在检测率和误判率指标上,GWOKELM算法的网络入侵检测率平均高达97.35%,优于其他算法。