摘要
在神经网络的推荐模型基础上引入自注意力机制,提出一种改进的基于自注意力机制TransNet推荐模型SATransNet。SATransNet模型使用卷积神经网络提取评论特征,通过自注意力神经网络自动学习特征内部的依赖关系,由依赖关系来决定需要关注的特征,从而解决数据表达能力不足的缺陷。本文在不同数据集上进行了实验比较与分析,SATransNet推荐模型在不同数据集上的预测评分较好,均方误差总体呈优。与基于注意力机制的推荐模型相比,SATransNet推荐模型的归一化折损累计增益均有提升,具有较好的预测评分效果和推荐相关性。