摘要

在BP神经网络训练算法中,针对权值的优化学习容易陷入局部极值点、收敛速度慢等问题,很多研究引入智能优化算法对其进行改进,但传统的智能优化算法通常有多个控制参数,若不能正确选取参数,或者没有适当选择初始点位置,则很难搜索到最优的神经网络权值。为了解决这些问题,提出一种基于单形进化的BP神经网络学习算法,它通过全随机搜索减少算法的控制参数,利用群体的多角色态保持粒子的多样性,避免算法陷入局部的极值点,减少了对初始值的依赖。在应用中,将该算法应用于神经网络的训练算法中,通过对UCI数据集和人脸图像的测试,实验结果表明,上校算法训练的神经网络有效提高了识别率与训练效率。