摘要
针对高维数据建模问题,提出一种独立元子空间算法(ICSM),作为一种新的集成学习算法,ICSM利用独立元在不同变量上的贡献度来选取子空间,符合了集成学习的要求,具备了明确的物理意义,有效地克服了随机子空间算法(RSM)的主要缺点。在此基础上,进一步将ICSM应用于工业过程监控,提出了一种新的ICSM-PCA故障检测算法。首先在各个子空间内分别建立相应的PCA监测模型,然后根据T~2和SPE统计量的值计算出集成时各自的权重,最后构造两个集成统计量对工业过程进行监测。通过在Tennessee Eastman(TE)模型上的仿真研究,说明提出的算法具有较好的建模效果和故障检测能力。
-
单位工业控制技术国家重点实验室; 浙江大学