摘要
针对LDA主题模型文本特征提取时主题识别不明确的问题,提出一种基于Labeled-LDA模型的文本特征提取方法。使用LDA主题模型对文本隐含主题中的主题词进行提取,根据TF-IDF算法实现对文本类别的关键词进行提取。通过文本simhash算法对提取出的主题词与关键词进行相似度计算,找到文本隐含主题的类别并提取特征词。实验表明结合后的特征提取方法比TF-IDF、传统LDA主题模型的文本特征提取方法,获得更高的分类精度,其中准确度提高了3.40%,召回率提高了4.40%,F值提高了3.92%。
-
单位昆明理工大学; 自动化学院