设计一种适用于桥梁静载试验中极不完备数据条件下的优化GM(1,1)模型。使用3个前置神经网络模块替换传统模型中的微分拟合过程,利用神经网络的回归能力对其进行优化,使用1个后置神经网络模块结合1个数据解模糊模块替换传统模型的数据还原过程,其他数据处理方式沿用传统模型的数据处理方式。经过仿真计算,发现不同桥梁设计规模下,优化模型的标准差显著低于传统模型,证实优化模型具有较显著的算力提升。