摘要
为进一步提高短期园区需水预测精度,解决因短期园区人工供水误差较大导致的水、电资源浪费问题,提出一种由麻雀搜索算法(SSA)、卷积长短时记忆神经网络(ConvLSTM)、长短时记忆神经网络(LSTM)组合的SSA-ConvLSTM-LSTM混合模型短期园区需水预测方法,并以河北工程大学为例进行了分析。针对园区用水数据在时间维度上具备的多峰值和多周期特征,采用ConvLSTM挖掘数据中的时空特征;为使预测峰值更接近实际峰值,加入LSTM提升预测性能;为优化混合模型的隐层神经元数和卷积核数,采用SSA优化算法实现自动调参。通过预测河北工程大学1 d和3 d需水量进行模型性能验证,并与其他模型进行对比。结果表明:相比向量自回归(VAR)模型、深度神经网络(DNN)模型和LSTM,该需水预测模型具有更高的预测精度。该方法在短期需水预测上表现出良好的适应性和鲁棒性,具有一定应用价值。
- 单位