摘要
针对传统算法依赖于对红外船舶目标与环境背景的精确分离和信息提取,难以满足复杂背景和噪声等干扰环境下的船舶目标检测需求,提出一种基于改进YOLOv5的红外船舶目标检测算法。在YOLOv5网络中添加Reasoning层,以一种新的提取图像区域间语义关系来预测边界框和类概率的体系结构,提高模型的检测精度,同时对YOLOv5目标检测网络的损失函数进行改进,从而达到进一步提高模型准确率的目的。验证结果表明,改进后的YOLOv5算法训练出来的模型,检测精确率和速度与实验列出的几种目标检测算法相比均有明显提升,其中平均精度均值(mAP)可达94.65%。该模型经过验证,既能满足检测的实时性要求,又能保证高精度。
-
单位自动化学院; 江苏科技大学