摘要

针对大数据环境下传统并行密度聚类算法中存在的数据划分不合理,聚类结果准确度不高,结果受参数影响较大以及并行效率低等问题,提出一种MapReduce下使用均值距离与关联性标记的并行OPTICS算法——POMDRM-MR。算法使用一种基于维度稀疏度的减少边界点划分策略(DS-PRBP),划分数据集;针对各个分区,提出标记点排序识别簇算法(MOPTICS),构建数据点与核心点之间的关联性,并标记数据点迭代次数,在距离度量中,使用领域均值距离策略(FMD),计算数据点的领域均值距离,代替可达距离排序,输出关联性标记序列;最后结合重排序序列提取簇算法(REC),对输出序列进行二次排序并提取簇,提高算法局部聚类的准确性和稳定性;在合并全局簇时,算法提出边界密度筛选策略(BD-FLC),计算筛选密度相近局部簇;又基于n叉树的并集型合并与MapReduce模型,提出并行局部簇合并算法(MCNT-MR),加快局部簇收敛,并行合并局部簇,提升全局簇合并效率。对照实验表明,POMDRM-MR算法聚类效果更佳,且在大规模数据集下算法的并行化性能更好。