分数阶微积分是应用数学的一个重要领域,在自然科学和工程技术等领域有着广泛的实际应用.基于Katugampola分数阶积分,利用凸性和一些经典不等式,建立了 Hermite-Hadamard型不等式,并给出了其误差估计.当对参数p→1时取极限,就得到了 Riemann-Liouville分数阶积分的相应结论.