摘要
DeblurGAN方法利用条件生成对抗网络解决了端到端的图像去模糊问题,但存在图像边缘细节恢复不足以及鲁棒性不高的问题,针对此问题,提出一种基于DeblurGAN的运动模糊图像盲复原方法。在生成网络中,采用多尺度卷积核神经网络提取特征,并使用级联空洞卷积扩大神经元的感受野;采用自适配归一化方法代替原来生成器中使用的实例归一化方法。其次,引入了梯度图像L1损失,结合对抗损失和感知损失,将其作为图像去模糊的正则约束,使得生成图像的边缘特征更加清晰。实验结果表明,提出方法复原的图像峰值信噪比数值较DeblurGAN算法高出5.4%,结构相似性指标高出1%;在主观上清晰化效果较好,且消除了网格效应。
- 单位