摘要

在国内重工业领域中,很多钢铁企业所采用的转炉大部分为最小型的转炉,由于容量有限无法对转炉冶炼结束时的锰、磷进行静态预测,进行影响了冶炼的精度。然而,传统算法用于实现锰和磷的冶炼终点。因此,充分利用最近开发的人工神经网络技术,基于Visual Basic编程语言,神经网络模型用于预测转炉冶炼结束时的锰和磷状态。针对半钢炼钢分开建立锰、磷含量、温度预测模型,确定输入层参数有37个,中间隐藏层参数有30个,输出层参数有两个3层BP神经网络。模型在30 000炉样本的基础上做数据训练,对权值、阈值进行修正,并保存100炉未训练过的学习样本作为模型网络训练依据,对转炉冶炼进行在线训练,通过训练的模型可以很好的适应转炉冶炼多变的生产条件。

  • 单位
    漯河职业技术学院