摘要
目前大多数面向像元、面向对象遥感影像分类对比研究算法、软件、样本均不同,引入多方面系统误差导致结果一定程度上不严谨。为更准确比较2种分类方法,本文采用面向像元、面向对象2种分类方式,在同软件平台、同分类器、同训练样本、同验证样本,即"四同"条件下对2018年4月17日高分一号周口城区融合影像进行分类对比研究,并完成主、客观评价精度评价。结果表明:①"四同"条件下2种分类方式、CART(Classification and Regression Tree)、SVM(Support Vector Machine)、RF(Random Forests)3种机器学习算法均能识别周口城区主要地物类型,而面向对象的分类效果明显优于面向像元分类,与前人研究结论一致。其中面向像元分类效果最好的是RF算法,总体分类精度为78.02%,Kappa系数为0.72;面向对象分类效果最好的是RF算法,总体分类精度为93.40%,Kappa系数为0.92;②尽管由于光谱特征相似、分布交叉,单类别建筑用地、交通用地用户精度与生产者精度较低,但面向对象分类较面向像元分类效果明显提升,以RF分类为例,建筑用地生产者精度由56.18%提高至92.13%,用户精度由69.44%提高至87.23%;交通用地生产者精度由72.15%提高至89.87%,用户精度由72.15%提高至92.20%;③与前人研究成果比较,本文在"四同"条件下实现了更科学、更严谨的面向像元、面向对象遥感分类方法对比,对后续高分辨率遥感影像分类具有一定参考意义。
-
单位西北核技术研究所