摘要
由于BP神经网络全局寻优存在较大误差,本文基于遗传算法(GA)对BP神经网络进行优化,得出YG8硬质合金耐磨性预测模型。取试验条件中的深冷温度、降温速率、深冷时间、回火温度、回火次数等5项关键工艺参数作为GA-BP模型输入,取磨损量作为模型输出。结果表明,GA-BP预测模型更具有灵活性,预测YG8硬质合金耐磨性正确率达到99.54%,且预测精度较传统的BP神经网络提升了4.07%。
-
单位如皋市非标轴承有限公司; 中国煤炭科工集团太原研究院; 太原科技大学