摘要
为了提升传统迁移学习故障诊断中信息挖掘深度,实现不同机器间的迁移学习,提出了一种基于特征的迁移神经网络轴承智能故障诊断方法。首先利用一个域共享的卷积神经网络同时从BLMS和BRMS中提取原始振动数据的可传递特征。然后,提出了多层域自适应和伪标记学习的正则化项,对神经网络的参数施加约束,以减小学习的可迁移特征的分布差异和类间距离。利用实验室采集的电机轴承和齿轮箱轴承的数据,识别出实际情况下机车轴承的健康状态。结果表明,该方法能够有效地学习可传递特征,弥补BLMS和BRMS数据之间的差异,验证了该方法的有效性。
- 单位