摘要
针对污水处理过程出水生化需氧量(biochemical oxygen demand,BOD)难以实时准确测量的问题,提出了一种基于互信息和自组织RBF神经网络的软测量方法对出水BOD进行预测。首先,使用基于互信息的方法提取相关特征参量作为软测量模型的输入变量;其次,设计一种基于误差校正-敏感度分析的自组织RBF神经网络,使用改进的Levenberg-Marquardt (LM)算法对网络进行训练以提高训练速度;最后将软测量模型应用于UCI公开数据集及实际的污水处理过程,实验结果表明该软测量模型结构紧凑,训练时间相对较短,预测精度有所提高,能够对出水BOD实现快速准确预测。
- 单位