摘要

针对鱼类行为量化过程中运动阴影区域去除难的问题,以金鱼为研究对象,分别从去除噪点及孤立数据点、使用马氏距离作为距离度量方法、明确聚类个数以及初始聚类中心点选择等方面对传统K-means聚类算法进行了优化,提出了一种基于改进K-means聚类算法的金鱼阴影去除及图像分割方法。在室内正常环境下,使用相机采集玻璃鱼缸中金鱼图像,首先等比例压缩10倍,使用中值滤波方法对样本图像进行预处理,然后将其从RGB颜色空间转换到Lab颜色空间,最后提取a、b分量并使用改进的K-means算法进行聚类。试验结果显示:和传统K-means聚类算法及FCM(Fuzzy c-means)聚类算法进行比较,改进算法对于图像阴影去除及分割具有更好的效果,在200幅具有不同阴影的金鱼样本图像中,基于改进K-means聚类算法的平均误分类的像素比率和平均运行时间分别为2.48%和0.87 5s,能够满足离线鱼类行为量化过程中图像预处理的要求。