摘要
卷积神经网络(Convolutional Neural Networks,CNN)在计算机视觉、自然语言处理为代表的数据处理领域应用广泛.在CNN训练过程中,超参数设置依赖于先验知识,不恰当的超参数会影响模型的训练效率和精度.为了解决这一问题,本文提出基于证据推理规则(Evidential Reasoning Rule,ER Rule)的CNN超参数质量评估模型,可在训练前提供高质量的超参数选择,从而提高模型的训练效率.首先,描述了CNN超参数评估的过程,然后构建了CNN的超参数质量评估模型,运用了奖罚策略实现指标权重的动态适应并给出模型的推理过程.最后,通过图像分类实验验证了模型的实际效果,实验结果表明本文提出的CNN超参数评估模型在多个数据集上预测准确率均高于90%,能够有效建立超参数与CNN模型效果的映射关系,从而过滤低质量的超参数.
- 单位