摘要

针对高光谱遥感图像的非线性解混问题,提出一种多图正则多核非负矩阵分解(MGMKNMF)算法,构造了多核空间中的多图正则项,并基于此构造了包含多核空间的多图正则项、多核权重正则项和多图权重正则项的MGMKNMF目标函数。MGMKNMF可在学习端元与丰度的过程中更新多核权重和多图权重,在合适的多核空间精确构造输入数据的图,解决了图权重和核权重的参数选择的问题。相比核非负矩阵分解(KNMF)的单一核,多核可确定更合适的核空间;相比图正则非负矩阵分解(GNMF)的单一图,多图更准确可靠。2个实测数据集和2个模拟数据集上的实验结果表明MGMKNMF算法是有效的。与GNMF、不含纯像元的核非负矩阵分解、核稀疏非负矩阵分解、基于核的字典剪枝非线性光谱解混、多图正则核非负矩阵分解算法相比,所提MGMKNMF算法在Cuprite和Jasper Ridge真实地物数据集上平均光谱角距离(SAD)值最优,分别为0.092 1和0.097 0;在HAPKE和广义双线性模型模拟数据集上平均SAD最优,分别是0.137 5和0.145 6,均方根误差值表现也最好,分别为0.050 6和0.057 0。