摘要

多源定位是信号处理中的重要问题。该文针对目标偏离初始网格点引起的基不匹配问题,构建具有Laplace先验的稀疏贝叶斯学习框架,提出基于稀疏贝叶斯学习的网格自适应多源定位算法AGMTL。本质上,AGMTL实现了稀疏信号重建和网格自适应定位字典的学习。仿真结果表明,AGMTL通过网格自适应调整,在定位误差,估计可靠性,抗噪性能上均远远优于传统的压缩感知定位算法。