摘要

面对网络上更新快速的海量新闻,如何快速、有效地从中自动发现敏感话题并进行持续跟踪是当下研究的热点。文章以网络舆情分析系统为应用背景,针对其敏感话题发现过程,通过对TDT领域应用较多的Single-pass算法进行改进,提出了一种基于相似哈希的增量型文本聚类算法。基于实际应用中抓取到的新闻文本数据,实验结果表明,文章提出的算法相比于原Single-pass算法在聚类效率方面具有明显提升。从实际应用的效果来看,该算法达到了实时话题发现的预期需求,具有较高的实用价值。