摘要

由于水体本身的特性以及水中悬浮颗粒对光的吸收和散射作用,水下图像普遍存在信噪比(SNR)低、分辨率低等一系列问题,但大部分方法传统处理方法包含图像增强、复原及重建,都依赖退化模型,并存在算法病态性问题。为进一步提高水下图像恢复算法的效果和效率,提出了一种改进的基于深度卷积神经网络的图像超分辨率重建方法。该方法网络中引入了改良的密集块结构(IDB),能在有效解决深度卷积神经网络梯度弥散问题的同时提高训练速度。该网络对经过配准的退化前后的水下图像进行训练,得到水下低分辨率图像和高分辨率图像之间的一个映射关系。实验结果表明,在基于自建的水下图像作为训练集上,较卷积神经网络的单帧图像超分辨率重建算法(SRCNN),使用引入了改良的密集块结构(IDB)的深度卷积神经网络对水下图像进行重建,重建图像的峰值信噪比(PSNR)提升达到0.38 dB,结构相似度(SSIM)提升达到0.013,能有效地提高水下图像的重建质量。