摘要

将卷积神经网络(CNN)和双向长短期记忆神经网络(BiLSTM)相结合,提出一种基于注意力机制的Att-CN-BiLSTM中文新闻文本分类模型.模型通过注意力机制有效融合了CNN层和BiLSTM层提取的新闻文本语义特征.在THUCnews新浪新闻数据集上与CNN、BiLSTM及其改进模型进行对比实验,模型分类准确率达到98.96%,精确率、召回率和F1值指标也都优于对比模型,实验结果表明Att-CN-BiLSTM模型可以有效提升中文新闻文本分类效果.

  • 单位
    安徽商贸职业技术学院; 大连财经学院