摘要

在灰色GM(1,1)预测模型基础上,对GM(1,1)模型存在的建模偏差进行修正,使修正后的模型符合数据规律,提高预测精度.结合新陈代谢理论,建立基于新陈代谢的无偏GM(1,1)模型.该模型利用数据的新旧更替,能在不断补充新信息的同时,及时地去掉老信息,避免随着信息的增加,较旧的数据对模型的信息显著性下降的弊端.通过实证,该模型的预测精度优于GM(1,1)模型、无偏GM(1,1)模型以及新陈代谢GM(1,1)模型.