介绍了一种对样本集取样的方法 ,并在此基础上对序贯最小优化 (sequentialminimaloptimization ,SMO)算法进行了改进 ,提出了取样序贯最小优化 (S SMO)算法 .S SMO算法去掉了大部分非支持向量 ,将支持向量逐渐收集到工作集中 .实验结果表明 ,该方法提高了SMO算法的性能 ,缩短了支持向量机分类器的训练时间 .