基于OPTICS聚类的差分隐私保护算法的改进

作者:王红; 葛丽娜; 王苏青; 王丽颖; 张翼鹏; 梁竣程
来源:计算机应用, 2018, 38(01): 73-78.
DOI:10.11772/j.issn.1001-9081.2017071944

摘要

采用聚类算法预先处理个人隐私信息实现差分隐私保护,能够减少直接发布直方图数据带来的噪声累积现象,同时减小了直方图因合并方式不同带来的重构误差。针对DP-DBSCAN差分隐私算法存在对数据参数输入敏感问题,将基于密度聚类的OPTICS算法应用于差分隐私保护中,并提出改进的DP-OPTICS差分隐私保护算法,对稀疏型数据集进行压缩处理,对比采用同方差噪声和异方差噪声两种添加噪声方式,考虑攻击者能够攻破隐私信息的概率,确定隐私参数ε的上界,有效平衡了敏感信息的隐私性和数据的可用性之间的关系。将DP-OPTICS算法和基于OPTICS聚类的差分隐私保护算法、DP-DBSCAN算法进行对比,DP-OPTICS算法在时间消耗上介于其余二者之间,但是在取得相同参数的情况下,聚类的稳定性在三者中最好,因此改进后OP-OPTICS差分隐私保护算法总体上是可行的。

全文