摘要

针对网络数据特征维度高、现有的入侵检测方法准确率低的问题,该文提出了一种基于主成分分析(PCA)和循环神经网络(RNN)的入侵检测方法PCA-RNN。该方法先对网络数据进行预处理,通过主成分分析法对数据进行特征降维和降噪,找出含有最大信息的主成分特征子集,然后对处理后的数据使用循环神经网络进行分类训练。实验使用基于Python的TensorFlow平台,并采用NSL-KDD作为实验数据集。实验结果表明,与常用的基于机器学习和深度学习方法的入侵检测技术相比较,该文提出的入侵检测方法可有效地提高检测的准确性。