摘要
为丰富单视图特征的表达和实现多视图间互补学习,提出一种基于深层特征增强的多视图隐空间融合表征方法,该模型共三个子模块:单视图增强学习、多视图互补融合、基于聚类任务导向的自表达学习。首先,引入胶囊网络的动态路由机制,在目标函数中加入间隔损失惩罚项,得到差异性特征增强的单视图表征;然后,融合不同视图的重要特征,学习得到多视图的公共隐空间,实现视图特征间的互补表达,得到满足分类任务的融合表征;进而,利用子空间聚类算法学习隐空间的自表达矩阵,在目标函数中加入隐空间重构误差矩阵和噪声数据矩阵的低秩表示约束项,得到满足聚类任务的融合表征。最后,在4个不同数据集上的分类和聚类实验结果表明,与多个基准算法相比,本算法性能稳定提升,学到的融合表征能较好地满足下游分类和聚类任务需求。
-
单位太原理工大学; 山西能源学院