摘要
<正> 这是教材上的一道习题: 求经过两条曲线x~2+y~2+3x-y=0①和3x~2+3y~2+2x+y=0②交点的直线方程。启蒙阶段,可先解交点,后求直线方程: 由①×3-②,可得7x-4y=0③又由①、②联立解之得:x_1=0,y_1=0;x_2=-4/13,y=-7/13。由此得所求的直线方程:7x-4y=0 ④比较③、④,发现由③到④是条回路,于是回头研究式③为所求的道理;若(x_1、y_1)、(x_2、y_2)是两曲线的交点,则应同时满足①、②两式,从而满足③式。即方程③表示的直线过两曲线的交点,又因这样的直线只有一条,故直线③为所求。