摘要

生物量作为评价作物长势及产量估算的重要指标,科学、快速、准确地获取生物量信息,对于监测冬小麦生长状况以及产量预测等具有重要意义。以冬小麦为研究对象,通过相关性分析,选取相关性较好的小波能量系数,同时耦合叶面积指数,基于支持向量回归算法、随机森林算法、高斯过程回归3种算法构建冬小麦生物量估算模型。结果显示,基于小波能量系数,分别利用支持向量回归算法、随机森林算法、高斯过程回归进行生物量估算,4个生育期的验证R2分别是0.55、0.40、0.39;0.75、0.70、0.83;0.84、0.92、0.93;0.84、0.89、0.85。表明高斯过程回归模型估算精度最优。叶面积指数耦合小波能量系数,利用支持向量回归算法、随机森林回归算法、高斯过程回归进行生物量估算,4个生育期的验证R2分别是0.76、0.73、0.77;0.76、0.72、0.84;0.87、0.94、0.94;0.85、0.90、0.91,表明高斯过程回归算法估算精度最优,并且在一定程度上能够克服冠层光谱饱和现象,提高模型估算精度。以小波能量系数和叶面积指数为输入变量结合高斯过程回归算法建立冬小麦生物量估算模型,可以提高生物量估算精度,为基于遥感技术的作物参数快速估算提供科学参考。