希尔伯特-施密特独立性准则(Hilbert-Schmidt independence criterion,HSIC)是一种基于核函数的独立性度量标准,具有计算简单、收敛速度快和偏差低等优点,广泛应用于统计分析和机器学习问题中。特征选择是一种有效的降维技术,它能评估特征的重要性,并构造适合学习任务的最优特征子空间。系统综述了基于HSIC的特征选择方法,详细介绍了其中的理论基础、算法模型和求解方法,分析了基于HSIC的特征选择的优点与不足,并对未来的研究做出展望。