摘要

为提高麦穗识别技术检测效率和检测精度,以GWHD数据集为基础数据集并进行数据扩充,针对现有的Faster R-CNN深度学习算法模型做了一定改进,在特征提取网络中用ResNet50网络替代了VGG16网络,并在ResNet50网络引入BiFPN加权融合单元.同时在模型中加入了K-means聚类算法,通过对目标框进行聚类从而得出9个先验框的长宽比,以此来替代原算法中固定的先验框长宽比例,以更好地适应训练.经过改进,模型的泛化能力得到增强,mAP准确率达到91.13%,相比改进前提高了0.54%,同时单张检测时间也缩短了0.1 s,提高了检测效率,验证了改进模型的可行性.

全文