摘要
为了提高人脸识别算法的识别率,提出了一种基于局部奇异值分解(Local Singular Value Decomposition,LSVD)和监督拉普拉斯特征映射(Supervised Laplacian Eigenmap,SLE)的人脸图像识别方法。由于奇异值向量具有良好的稳定性、转置不变性等特点,首先利用局部奇异值分解方法从人脸图像中提取特征向量;然后采用监督拉普拉斯特征映射算法对已获取的人脸特征进行维数约简。在Yale和ORL人脸库上的实验结果表明,该算法能有效地提高人脸识别的性能。
-
单位现代教育技术中心; 盐城工业职业技术学院; 盐城工学院; 机电工程学院