摘要
深度卷积神经网络CNN通过输入图片直接预测出方向盘转角,以端到端的方式应用在自动驾驶车道保持任务上并取得了较好的效果。但在同时进行车道保持与绕开障碍物难题上,当前的方法还不足以对车辆有较好的控制。采用分支网络辅助任务学习方法,首先采用深度卷积神经网络CNN与长短期循环神经网络LSTM相结合,设计鲁棒性的CNN+LSTM分支网络结构,其次采用语义分割的辅助任务。基于分支网络辅助任务的端到端自动驾驶网络模型不仅能获取场景的空间与时序信息,还能有效地对驾驶场景进行语义理解,从而完成对车辆方向盘转角和速度的同时预测,最终较好地完成同时车道保持与避障绕开的驾驶行为。此网络框架在自动驾驶模拟器GTAV和实车上已经得到验证。