摘要

对地震伤亡人口的预测需要同时考虑地震破裂特征本身、灾区人口及其生活环境等特征,其是一个典型的复杂预测系统。本文基于深度学习神经网络方法和1976—2020年间78次地震伤亡事件,构建了中国大陆地震伤亡预测模型,综合使用发震年代、发震时刻、发震季节、Ⅵ度及以上区域受灾面积、Ⅵ度及以上区域受灾人口数、震源深度、极震区烈度和震源机制类型等8个参数,对包括2008年汶川8.0级和2010年玉树7.1级地震在内的9次地震事件进行了预测检验。结果显示,该预测模型能够较好地反映出中小地震的伤亡人口特征,除汶川地震和玉树地震外的7次地震伤亡事件预测值与实际值误差均在一个数量级上,对于2008年汶川8.0级和2010年玉树7.1级地震,预测值明显小于实际伤亡人口;其中玉树地震发震断层位于玉树州府结古镇之下,造成了相对较多的人口伤亡数量;汶川地震的伤亡人口数量不仅由地震直接导致,还包括了地震滑坡等次生灾害引起的伤亡数量。