基于深度学习的野生动物识别

作者:黄志静; 邵慕义; 张庭瑞; 沈嘉轶*
来源:电子测试, 2022, 36(22): 69-10.
DOI:10.16520/j.cnki.1000-8519.2022.22.019

摘要

为了更好地保护野生动物以及动物基因库的种类,保障生物链的完整性。运用深度学习技术对野生动物的图像进行识别,并且为了降低噪声信息的干扰及提高野生动物图像识别的准确率,提出了基于深度残差收缩网络的野生动物识别模型。目的是可以更好地帮助社会对野生动物进行监管和保护。该模型在深度残差网络的基础上融入注意力机制和软阈值函数,从而降低噪声信息的干扰,提高图像识别的准确率。将深度残差收缩网络与深度残差网络模型对相同野生动物数据集进行训练作对比,同时对部分野生动物图像进行了测试。实验结果表明,深度残差收缩网络提高野生动物图像识别准确率。