摘要
为同时获得正负量化关联规则,并尽量减少人为干预的影响,在多目标烟花优化算法的基础上,提出一种正负量化关联规则挖掘算法。引入全面搜索关联规则,使用外部库存放非支配解,通过基于相似度的冗余淘汰机制保持库中关联规则的多样性,经多次迭代获得关联规则集合。实验结果表明,该算法无需人为指定支持度、置信度等阈值,一次运行后即可获得正负关联规则。此外,与Apriori算法及单目标进化算法相比,该算法在不同数据集上均可得到稳定的结果,能充分覆盖数据集,在可靠性、相关性及可理解性之间获得较好的均衡。
- 单位